An Open-Source Knowledge Graph Ecosystem for the Life Sciences

Tiffany J. Callahan MPH, PhD

The Healthcare and Life Sciences Symposium Knowledge Graph Conference May 2nd, 2022

COLUMBIA UNIVERSITY DEPARTMENT OF BIOMEDICAL INFORMATICS

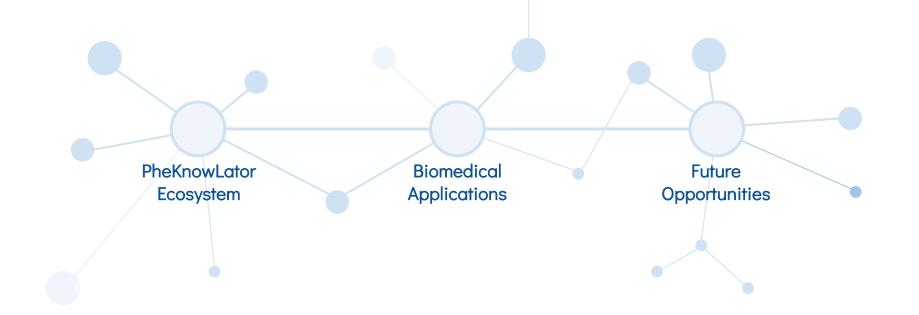
I have <u>NO</u> financial disclosures or conflicts of interest with the material presented in this talk.

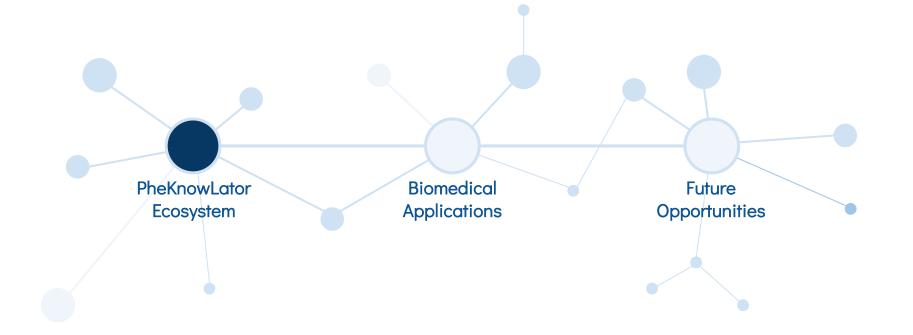
Motivation

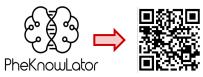
Knowledge graphs integrate disparate data, can help decipher complex processes, and have been used to systematically interrogate the biology underlying complex systems¹

Unsolved Challenges for Constructing Open-Source Knowledge Graphs^{2,3}

- 1. Support only a single knowledge model
- 2. Standards, technical complexity, usability, and scalability
- 3. Biologically and clinically meaningful benchmarks







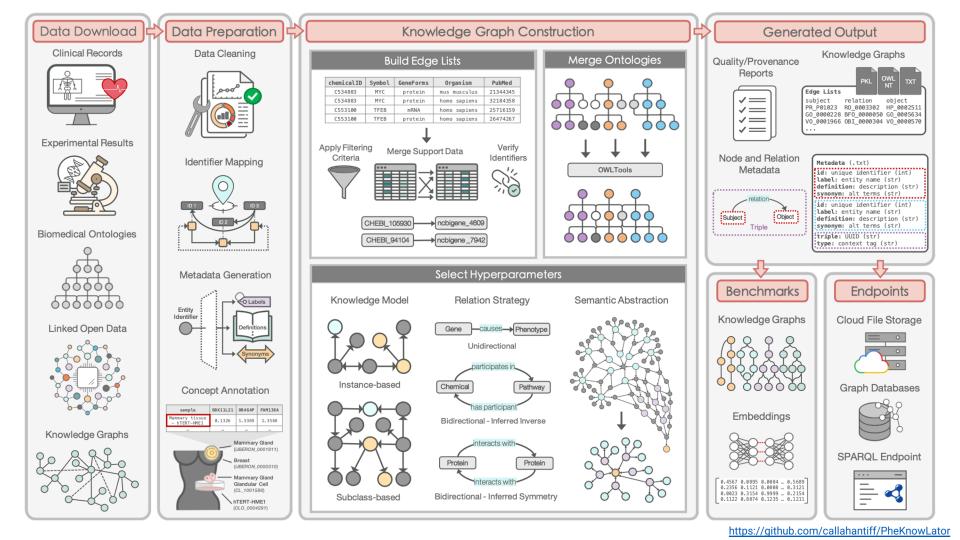
Phenotype Knowledge Translator

Ecosystem: Construct ontologically-grounded FAIR knowledge graphs

- Usability
 - Technical and laymen documentation
 - Jupyter Notebooks and interactive scripts
 - Containerization
- Scalability
 - System-scaled distributed execution framework
 - Flexible knowledge representation

Benchmarks: Monthly builds of knowledge graph benchmarks

Findable	 Unique Persistent Identifiers Data: Original and processed data Metadata: Logs and quality reports Infrastructure: Compute and containers
Accessible	Publicly Available Storage: RESTful access to builds Builds: Versioned on Docker Hub Notebooks: User-friendly examples
Interoperable	Standardized Resources Data: Ontology alignment Metadata: Provenance reporting Output: Standard file formats
Reusable	Detailed Documentation Releases: Code, data, builds Versioning: Semantic versioning Licensing: Internal/external resources



Benchmarks

Human Disease Mechanisms

Anchor Ontologies

- 12 ontologies

Edge Data

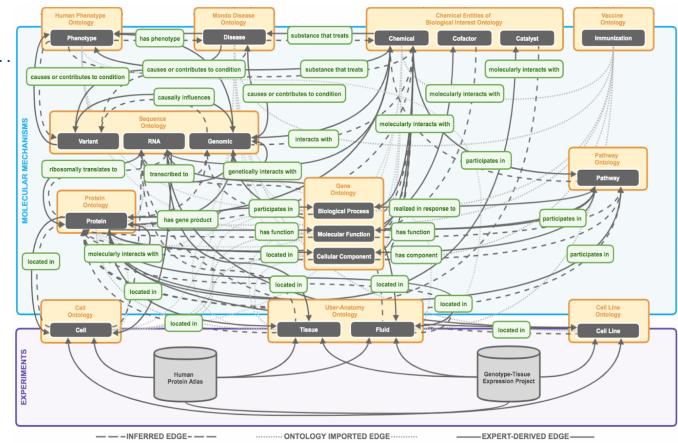
- 22 public datasets
- 2 genome-wide analyses

Validation

- Domain expert review
- Wet lab validation¹

Monthly Builds

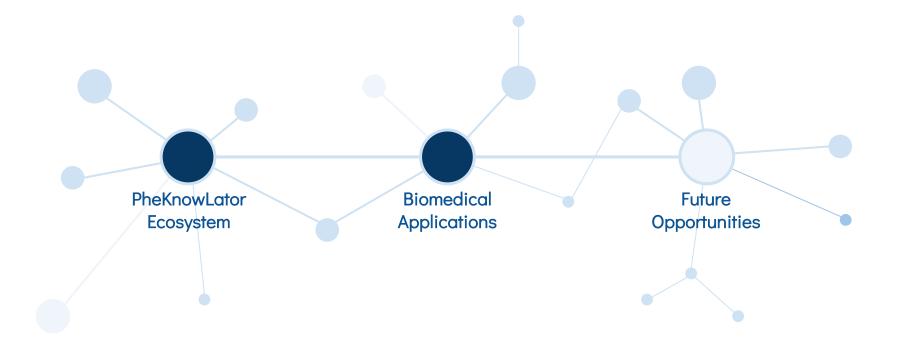
- 12 knowledge graphs
- 15M nodes and 47M edges



¹PMID: 32387679

COLUMBIA

COLUMBIA UNIVERSITY Department of Biomedical Informatics



Biomedical Application

- Programs like All of Us¹ and the National COVID Cohort Collaboration (N3C)² have made a ton of observational data available for research, but most do not yet integrate molecular data
- For rare diseases like Sickle Cell, prevention and treatment differs based on genotype³
- Observational data (alone) is often insufficient to determine genotype in the absence of newborn screening⁴

Objective: Can PheKnowLator enable the genotype of pediatric Sickle Cell Disease patients to be inferred from an independent population of pediatric genotyped patients?

Methods

Clinical Data: Children's Hospital of Colorado (CHCO)

- 2,646 rare disease patients (≥10 visits)

External Genotyped Data: Gene Expression Omnibus (GEO)

- Whole blood gene expression data¹

Node Embeddings: Walking RDF and OWL²

- CHCO: conditions, medications, measurements
- GEO: gene expression signature-adjusted embeddings

Evaluation

- K-Means clustering
- Patient similarity-based analyses

CHCO Rare Disease Patients

PKU: Phenylketonuria (n=235)
CH: Congenital Hypothyroidism (n=760)
SCD: Sickle Cell Disease (n=816)
CF: Cystic Fibrosis (n=835)

GEO SCD Patients

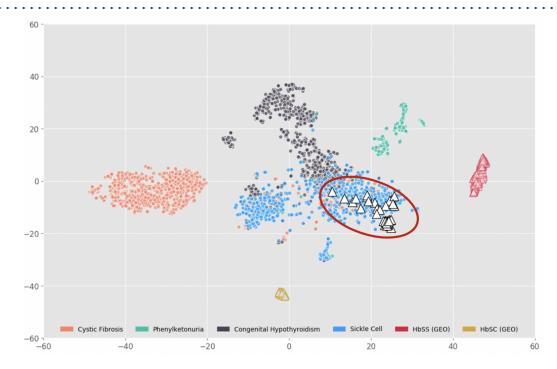
HbSS: Homozygous Hemoglobin S (n=147) **HbSC:** Homozygous Hemoglobin C (n=51) **Control:** (n=61)

Results

Geo HbSS (p<0.001) and HbSC (p<0.001) patients were significantly more similar to CHCO Sickle Cell Disease patients than the other rare disease patients

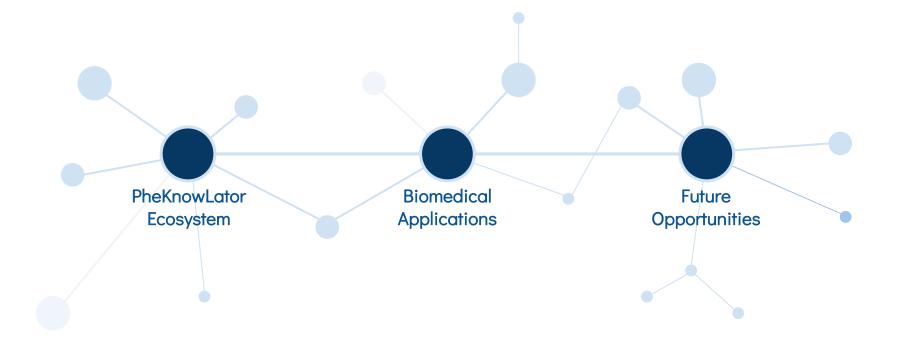
COLUMBIA COLUMBIA UNIVERSITY DEPARTMENT OF BIOMEDICAL INFORMATICS

Results



43 CHCO Sickle Cell Disease patients in the HbSS GEO cluster had at least 1 HbSC and HbSS diagnosis

COLUMBIA COLUMBIA UNIVERSITY DEPARTMENT OF BIOMEDICAL INFORMATICS



Future Opportunities

Solve real-world problems within healthcare, life sciences, and public health

- 1. Phenotype development and evaluation
- 2. Treatment justification
- 3. Causal inference

Phenotype Development and Evaluation

Development

- Recommendation systems like PHOEBE¹, rely heavily on the metadata and mappings provided by an ontology or vocabulary
- PheKnowLator can leveraging knowledge of the biological mechanism(s) underlying disease

Evaluation

- CohortDiagnostics² helps users determine if a phenotype is of sufficient quality by providing a detailed characterization of the underlying data
- PheKnowLator can enable a more targeted adjudication process by providing knowledgedriven filtering

Treatment Justification

Electronic health records do not explicitly connect a treatment and disease

PheKnowLator can explain why a particular drug was prescribed for a given indication

- Classify drugs by indication to help identify patients taking alternative treatments and 'offlabel' medication use
- Improve data quality by helping determine whether treatments without justification are due to missingness or malpractice

Causal Inference

Causal inference requires expert knowledge to formulate and answer scientific questions

- Identification and adjustment for confounding variables
- Knowledge of and adjustment for features not present in the data

PheKnowLator can help combine what is learned from observational data with what is known

Design	Interpretation
Identify confounders and negative controls	Explain associations between inputs and outputs
Generate causal subgraphs	Assess biological plausibility

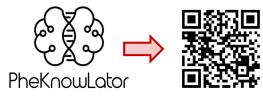
Questions?

William A. Baumgartner, Jr. University of Colorado Anschutz Medical Campus

Patrick B. Ryan Columbia University Janssen R&D

Lawrence E. Hunter University of Colorado Anschutz Medical Campus

George Hripcsak Columbia University



COLUMBIA UNIVERSITY DEPARTMENT OF BIOMEDICAL INFORMATICS

19